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Abstract. Performance of real-time applications on network communi-
cation channels are strongly related to losses and temporal delays. Sev-
eral studies showed that these network features may be correlated and
exhibit a certain degree of memory such as bursty losses and delays. The
memory and the statistical dependence between losses and temporal de-
lays suggest that the channel may be well modelled by a Hidden Markov
Model (HMM) with appropriate hidden variables that capture the cur-
rent state of the network. In this paper we discuss on the effectiveness
of using an HMM to model jointly loss and delay behavior of real com-
munication channel. Excellent performance in modelling typical channel
behavior in a set of real packet links are observed. The system parame-
ters are found via a modified version of the EM algorithm. Hidden state
analysis shows how the state variables characterize channel dynamics.
State-sequence estimation is obtained by use of the Viterbi algorithm.
Real-time modelling of the channel is the first step to implement adaptive
communication strategies.

1 Introduction

Gilbert and Elliott works [1][2] on modelling burst-error channels for bit trans-
mission showed how a simple 2-state Hidden Markov Model (HMM) was effec-
tive in characterizing some real communication channels. As in the case of bit-
transmission channels, end-to-end packet channels show bursty loss behavior.
Jiang and Schulzrinne [10] investigated lossy behavior of packet channels finding
that a Markov model is not able to describe appropriately channels inter-loss
behavior. They also found that delays manifest temporal dependency, i.e. they
should not be assumed to be a memoryless phenomenon. Salamatian and Vaton
[11] found that an HMM trained with experimental data seems to capture chan-
nel loss behavior and found that an HMM with 2 to 4 hidden states fits well
experimental data. Liu, Matta and Crovella [12] used an HMM-based loss-delay
modelling in the contest of TCP traffic in order to infer loss nature in hybrid
wired/wireless environments. They found that such a kind of modelling can be
used to control TCP congestion avoidance mechanism. Similar works have been
done by Zorzi [7] on wireless fading links.
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Fig. 1. End-to-end packet channel.

These works suggested us that a Bayesian model, or an HMM, should be
effective in capturing the dynamic behavior of losses and delays on end-to-end
packet channels [13][14]. The definition of such a model is highly desirable for de-
signing and evaluating coding strategies. Furthermore, the possibility of learning
on-line the model parameters opens the way to design efficient content-adaptive
services.

In this paper we propose a comprehensive model that jointly describes losses
and delays. The model is an HMM trained with an adapted version of the EM al-
gorithm to capture channel dynamics. Then we discuss about the meaning of the
hidden states of the trained model. Hidden states of the model represent differ-
ent working conditions of the channel. Current state knowledge and prediction of
state transitions enable a powerful characterization of future channel behavior,
which could be used to implement content-adaptive strategies for coding (e.g.
Multiple Description Coding) and scheduling (e.g. traffic shaping).

2 The Model

The model we are referring to is shown in Fig. 1. A periodic source transmits
a packet of size Nb bits every T seconds, i.e. at rate R = Nb/T bits/s. The
network randomly cancels and delays packets according to current congestion.
Transmitted packets are numbered, n = 1, 2, . . .; tn and τn are the arrival time
and the accumulated delay of the n-th packet respectively, i.e. τn = tn − nT .

Memory and correlation presence in losses and delays dynamic of the commu-
nication channels suggest the introduction of a hidden state variable, namely xn,
carrying information about link congestion. An observable variable, yn, is intro-
duced in order to describe jointly losses and delays. Let us denote {si}i∈{1,2,...,N}
the possible states of the channel, and let define

yn =
{

τn if packet was NOT lost
−1 if packet was lost

. (1)

The state and the observable variables are related according to the HMM struc-
ture showed in Fig. 2. The channel dynamics are characterized by
Λ = {A,p, f1(τ), f2(τ), . . . , fN(τ)}, where A = [aij ]

N
i,j=1 is the state transition

matrix,i.e.
aij = Pr(xn+1 = sj |xn = si) i,j∈{1,2,...,N} , (2)
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Fig. 2. Hidden Markov Model.

while p = [pi]
N
i=1 is the loss probability vector, and {fi}N

i=1 are the delay condi-
tional pdfs,i.e.

{
pi = Pr(yn = τn|xn = si)
1 − pi = Pr(yn = −1|xn = si) i∈{1,2,...,N} , (3)

Pr(τn > t|xn = si, yn = τn) =
∫ +∞

t

fi(τ)dτ . (4)

The hybrid random variable yn is characterized given {xn = si} by the following
conditional pdf,

bi(t) = pifi(t) + (1 − pi)δ(t + 1) . (5)

If π = [πi]
N
i=1 is the steady-state probability distribution,

πi = lim
n→∞{Pr(xn = si)} i∈{1,2,...,N} , (6)

the average loss probability and the average delay of the model are

Ploss =
N∑

i=1

πi(1 − pi) ; Dmean =
N∑

i=1

πidi , (7)

where di = γiϑi is the conditional-average delay.
Parameters Λ for the model are estimated by the Forward-Backward algo-

rithm [3][4][5]. For HMMs it is a form of the Expectation-Maximization (EM)
algorithm [8], an optimization procedure searching for the set of parameters ac-
cording to maximization of likelihood of an observable sequence. Given a training
sequence y = [yi]

K
i=1, compute iteratively the following equations,

âij =
∑K−1

k=1 αk(i)aijbj(yk+1)βk+1(j)∑K−1
k=1 αk(i)βk(i)

i,j∈{1,2,...,N} , (8)

p̂i =
∑K

k=1 ρk(i)βk(i)∑K−1
k=1 αk(i)βk(i)

i∈{1,2,...,N} , (9)

µ̂i =
∑K

k=1 ρk(i)βk(i)yk∑K−1
k=1 ρk(i)βk(i)

i∈{1,2,...,N} , (10)
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σ̂2
i =

∑K
k=1 ρk(i)βk(i)(yk − µi)2∑K−1

k=1 ρk(i)βk(i)
i∈{1,2,...,N} , (11)

where

αk(j) =
N∑

i=1

αk−1(i)aijbj(yk) k∈{2,3,...,K}
j∈{1,2,...,N} , (12)

βk(i) =
N∑

j=1

aijbj(yk+1)βk+1(j)
k∈{1,2,...,K−1}
i∈{1,2,...,N} , (13)

are the forward and backward partial likelihood, and where

ρk(j) =
N∑

i=1

αk−1(i)aijpj
∂bj(t)
∂pj

∣∣∣∣
t=yk

k∈{2,3,...,K}
j∈{1,2,...,N} . (14)

Our choice of conditional pdf’s for modelling delays is a classical Gamma distri-
bution, as suggested by several works [6][9],

fi(t) =
(t/ϑi)γi−1e−(t/ϑi)

ϑiΓ (γi)
u(t) . (15)

3 Hidden States Analysis

Measures of losses and delays have been performed on real Internet channels us-
ing the software Distributed-Internet Traffic Generator (D-ITG) [15][18]. D-ITG
was used to obtain loss-delay sequences of UDP traffic. A little portion of the
sequences was used as a training sequence to learn model parameters. Perfor-
mance of the trained model have been tested on the remaining portions of the
sequences. The model showed good modelling properties, i.e. the training pro-
cedure well captures loss-delay statistics of the channel and the trained model
exhibits generalization capacity. Fig. 3 and Table 1 summarize the results we
obtained in terms of channel modelling. More specifically, they show the results
concerning a typical data set: the log-likelihood trend during the learning pro-
cedure (Fig. 3(a)); the histogram of delays in the training sequence (Fig. 3(b));
the continuous term of the pdf (5) of the observable variable before and after
the learning procedure (Fig. 3(c)); the log-likelihood of the models before and
after the learning procedure evaluated for sequences not used during the train-
ing (Fig. 3(d)); the average loss probability and average delay of the model (7)
before and after the learning procedure (Table 1). More details can be found in
[13][14].

To verify how the hidden state variable xn captures the current channel
congestion state, a Viterbi algorithm [5] has been applied to the training se-
quence. We remind that the Viterbi algorithm furnishes the most likely state
sequence x = (x1, x2, . . . , xK), i.e. the state sequence such that the a posteriori
probability Pr(x/y, Λ) is maximum. Fig. 4 shows the temporal evolution of the
training sequence y = (y1, y2, . . . , yK) and the state sequences obtained by use
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(c) Continuous term of pdf before (dashed) and after (solid) learning procedure, for
2−,3− and 4− state models.
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Fig. 3. Joint loss-delay modeling using a HMM.

of the Viterbi algorithm on the previous 2−, 3−, and 4−state trained models.
The trained models give state sequences that look to capture loss-delay network
behavior quite well.

Now we want, with reference to Fig. 4, to furnish a qualitative interpretation
of states automatically found. If s

(k)
i is the i-th state of the k−state model, then

– the 2−state model emerges to distinguish 2 situations: s
(2)
1 for lower delays

and fewer losses, s
(2)
2 for large delays and many losses, (Fig. 4(b));

– the 3−state model seems to use its states to distinguish the same 2 situations
as the previous model with s

(3)
1 resembling s

(2)
1 , while s

(2)
2 is now split in 2

states: s
(3)
2 for many losses and s

(3)
3 describing very high-delays situation,

(Fig. 4(c));
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Table 1. Loss probability and average delay before and after the learning procedure
compared to statistics of the training sequence.

Ploss Dmean (ms)

training
sequence

0.117 206.10

starting
model

0.500 286.90

2 − state
model

0.132 246.95

3 − state
model

0.132 253.64

4 − state
model

0.133 272.42

Table 2. Steady-state probabilities, State-Conditioned loss probabilities and State-
Conditioned average delay before and after the learning procedure for a 2−state model.

starting trained

π1

1 − p1

d1 (ms)

0.500
0.500
201.14

0.450
0.085
131.14

π2

1 − p2

d2 (ms)

0.500
0.500
372.65

0.550
0.170
341.69

– the 4−state model distinguishes the same 2 situations as the 2−state model,
but now each one of them is described with 2 states: s

(4)
3 and s

(4)
4 respec-

tively corresponding to s
(3)
2 and s

(3)
3 for the high-delays/many-losses situ-

ation, while for the low-delays situation s
(2)
1 or s

(3)
1 too is split: s

(4)
1 de-

scribes low-delays and losses and s
(4)
2 describes low delays and very few

losses, (Fig. 4(d)).

Fig. 5 synthesizes the correspondences we noted about states of the trained
models. Let we denote π

(k)
i , 1 − p

(k)
i and d

(k)
i , the steady-state probability, the

loss probability and the average delay of the state s
(k)
i , respectively. Let P

(k)
loss,a,

D
(k)
mean,a and P

(k)
loss,b, D

(k)
mean,b be the loss probabilities and the average delays in

the two situations previously evinced (low delays or few losses, and larger delays
or many losses) for the k−state model; π

(k)
a and π

(k)
b are the corresponding

steady probabilities. From Tables 2, 3, and 4, the following equalities strengthen
the effectiveness of the various models, confirming the correspondence, previously
described, among hidden states as well as the significance of the state variable
xn. 


π

(2)
a = π

(2)
1 = 0.450

π
(3)
a = π

(3)
1 = 0.441

π
(4)
a = π

(4)
1 + π

(4)
2 = 0.467

,




π
(2)
b = π

(2)
2 = 0.550

π
(3)
b = π

(3)
2 + π

(3)
3 = 0.559

π
(4)
b = π

(4)
3 + π

(4)
4 = 0.533

, (16)
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Table 3. Steady-state probabilities, State-Conditioned loss probabilities and State-
Conditioned average delay before and after the learning procedure for a 3−state model.

starting trained

π1

1 − p1

d1 (ms)

0.333
0.500
158.27

0.441
0.085
130.72

π2

1 − p2

d2 (ms)

0.333
0.500
286.90

0.383
0.111
290.62

π3

1 − p3

d3 (ms)

0.333
0.500
415.53

0.176
0.298
481.13

Table 4. Steady-state probabilities, State-Conditioned loss probabilities and State-
Conditioned average delay before and after the learning procedure for a 4−state model.

starting trained

π1

1 − p1

d1 (ms)

0.250
0.500
132.54

0.128
0.139
77.98

π2

1 − p2

d2 (ms)

0.250
0.500
235.45

0.339
0.045
181.98

π3

1 − p3

d3 (ms)

0.250
0.500
338.35

0.330
0.120
312.53

π4

1 − p4

d4 (ms)

0.250
0.500
441.26

0.203
0.297
480.87




P
(2)
loss,a = π

(2)
1 (1 − p

(2)
1 ) = 0.038

P
(3)
loss,a = π

(3)
1 (1 − p

(3)
1 ) = 0.037

P
(4)
loss,a = π

(4)
1 (1 − p

(4)
1 ) + π

(4)
2 (1 − p

(4)
2 ) = 0.033


P

(2)
loss,b = π

(2)
2 (1 − p

(2)
2 ) = 0.094

P
(3)
loss,b = π

(3)
2 (1 − p

(3)
2 ) + π

(3)
3 (1 − p

(3)
3 ) = 0.095

P
(4)
loss,b = π

(4)
3 (1 − p

(4)
3 ) + π

(4)
4 (1 − p

(4)
4 ) = 0.100

, (17)




D
(2)
mean,a = d

(2)
1 = 131.14 ms

D
(3)
mean,a = d

(3)
1 = 130.72 ms

D
(4)
mean,a = π

(4)
1

π
(4)
1 +π

(4)
2

d
(4)
1 + π

(4)
2

π
(4)
1 +π

(4)
2

d
(4)
2 = 153.52 ms



D
(2)
mean,b = d

(2)
2 = 341.69 ms

D
(3)
mean,b = π

(3)
2

π
(3)
2 +π

(3)
3

d
(3)
2 + π

(3)
3

π
(3)
2 +π

(3)
3

d
(3)
3 = 350.65 ms

D
(4)
mean,b = π

(4)
3

π
(4)
3 +π

(4)
4

d
(4)
3 + π

(4)
4

π
(4)
3 +π

(4)
4

d
(4)
4 = 376.55 ms

, (18)
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(d) State-sequence estimation for a 4−state model.

Fig. 4. Example of state-sequence estimation based on Viterbi algorithm.

where
D

(k)
mean,situation =

∑
i∈situation Pr(s(k)

i |situation)d(k)
i

=
∑

i∈situation
π

(k)
i

π
(k)
situation

d
(k)
i ,

(19)

and where situation = {a, b} and k = {2, 3, 4}.
Moreover, Figs. 6 and 7 show the hidden states of the starting and trained

models on a test sequence. Comparing state-sequences from starting and trained
models it can be noted how they assume a very different behavior. In case of
starting models, hidden states are strictly dependent from instantaneous behav-
ior of the channel, showing a rapidly oscillating trend; while hidden states for
the trained models seem to capture well the state of the network on a larger
time-scale, exhibiting a more stable trend.

All this rises up the following considerations. A state is associated to a par-
ticular loss probability (depending on parameters p), to a particular average
delay (depending on parameters {γ, ϑ}), to a particular duration in the state
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Fig. 5. Correspondences among states of the previous trained models.

itself (depending on parameters A) and to a particular transition probability
into another state (depending on parameters A).

Stable behavior of the states of a trained model suggests to investigate on the
possibility of supporting adaptive services mechanisms. Such on-line modelling
features can be exploited to support device independent services as defined by
the corresponding W3C working group [17], according to the scheme showed in
Fig. 8. Such a scheme needs losses and delays to be monitored to train an HMM-
model like the one previously described. Then state-sequence estimation is used
to foresee the short-term future behavior of the channel. This information could
be sent back to the sender in order to adapt transmission. This strategy would
clearly require that sufficient stationarity of the channel exists to make adaptive
coding strategies worth the effort. We believe this possible in many practical
situations and we are currently pursuing such an effort. When adaptive coding
is not possible, or not worth the effort, good channel modelling can be very
useful to evaluate performance of existing coders.

4 Conclusion

In this paper we presented an HMM used to model end-to-end packet channels
behavior capturing jointly loss and delay characteristics. A training procedure
to learn model parameters, based on the EM algorithm, was derived. Tests ran
on real packet links showed very encouraging preliminary results. Trained mod-
els exhibit very good generalization capacities. We also discussed on the signifi-
cance of hidden states automatically found by the training algorithm. We showed
how the states can be associated to particular congestion levels of the network.
Monitoring or even prediction of hidden states should be very effective in im-
plementation of content-adaptive communication strategies. Future works will
be directed towards model improvements and development of content-adaptive
strategies based on hidden state knowledge.
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(d) State-sequence estimation for a
4−state model before learning.

Fig. 6. Significance of the state variable
before learning procedure.
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(a) Example of test sequence.
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(b) State-sequence estimation for a
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(c) State-sequence estimation for a
3−state model after learning.
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Fig. 7. Significance of the state variable
after learning procedure.

Fig. 8. Scheme for an adaptive communication protocol using HMM-based channel
modelling.
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